This is the Truth About Coal

There has been a recent push to revive US coal-fired power plants in the name of electric power resilience and reliability. Why is this a bad idea? It is a bad idea for several reasons. Following is a list of the top 4 reasons why coal is a bad idea

Electricity from Coal Plants is More Expensive

Coal requires all of us to pay more on our energy bills. It’s expensive compared to most other forms of power from renewable energy to natural gas. According to Lazard’s most recent report on the unsubsidized levelized cost of energy, the lowest cost coal plant is $60/MWh this is in comparison to wind at $30/MWh, gas combined cycle at $42/MWh and utility scale solar at $43/MWh. When there is an apples to apples comparison between coal and renewable energy. This means that we are looking at plants that produce the same amount kWh per year, coal is much higher than solar and significantly higher than solar. The facts demonstrate that coal is more expensive than most other viable options. Keep in mind that this is unsubsidized costs, none of the “unfair” investment tax credits or production tax credits are included in this price. Further, this does not include the social and environmental costs that come from coal. That is covered later.

Coal Plants are a Public Health Nuisance

Speaking of social and environmental costs, coal power plants emit mercury and a variety of other greenhouse gas emissions that should be properly accounted for. The key concern here is the amount of mercury emitted by coal plants. which can result in significant health risks. According to a recent EPA analysis, over 42% of mercury emissions in the United States come from coal fired power plants. Overall 50% of mercury emissions comes from fossil fuel plants. This does not include all of the other dioxins and heavy metals that come from primarily coal plants. Below you can see the dispersion of mercury/toxic emitting power plants.

EPA – Toxic Rule Facilities

The problem with mercury is that it significantly increases a community’s health risk. High levels of mercury emitted from power plants can harm brain, heart, kidneys, lungs and immune systems of people of all ages. Further, mercury from power plants has been found to have a significant negative impact on a baby’s development, with particular impacts to a baby’s nervous system.

Coal Plants are not that Resilient

Coal power plants are not as resilient as some would like us to believe. Coal plants and the supply chain that gets coal to the power plants are highly susceptible to cyber, physical and climate risks. A recent study by the National Academies of Science titled Coal: Research and Development to Support National Energy Policy found that ““The rail net­works that transport the nation’s coal—like air traffic control and electric trans­mission networks—have an inherent fragility and instability common to complex networks. Because con­cerns about sabotage and terrorism were largely ignored until recently, existing networks were created with potential choke points [like some rail bridges over major rivers]…that cause vulnerabili­ty…[and] the potential for small-scale issues to become large-scale disruptions.”

Climate Change May Hurt Rail System

The Department of Energy further elaborates on the fragility of coal transport by finding  “Hardly a month goes by that delivery of Powder River Basin (PRB) coal somewhere in the supply chain is not interrupted by a derailment, freezing, flooding, or other natural occurrence.” Climate change is likely to increase heat that buckles rails, floods and storms that undermine tracks, and extreme weather that spikes electric demand. Meanwhile, utilities, having cut coal inventories threefold during 1980–2000 to save cost, keep trying to squeeze out more cost, exacerbating risk.” A recent example of coal not being that fuel secure was the Texas WA Parish plant. During Hurricane Harvey, the plant had to switch from coal to natural gas due to saturated coal piles. Those proponents for coal should also recall the Polar Vortex that resulted in frozen coal piles. You can’t burn frozen coal.

One other thing, coal or any other water-cooled power generation system can’t operate or at least not very efficiently when the water is too warm or there is not enough water to cool the plant. I covered this in a recent blog post on the power sector having a significant water problem.

Climate Change Induced Lack of Water Reduces Power Resilience

Coal Plants are Significant Greenhouse Gas Emitters

Can’t forget this one. Coal power plants emit significant greenhouse gas emissions. In the US, coal accounts for 67% of greenhouse gas emissions in the power sector. Of the total greenhouse gas emissions, 28% comes from electric power generation. Granted, overall GHG emissions have come down due to fuel switching since 1990, but not by much. This largely due to much of the switching is to natural gas, another greenhouse gas contributor, although not as large of one. Also, there have some increases in demand across parts of the country which has limited overall reduction.

Coal Power Plant’s Climate Change Problem

The current administration has not made the connection between greenhouse gas emissions and climate change. By not making this connection, that cannot see that sustaining or increasing emissions will result in a significant increase in storm intensity that will negatively impact the overall power system, i.e. hurt system resilience. Storm intensity, demonstrated by Superstorm Sandy, Hurricane Harvey, Irma and Maria, the Polar Vortex, to name a few, is anticipated to significantly increase under current greenhouse gas projection scenarios. If the concern of the administration is resilience of our power system due to extreme storms, there probably should be some effort to reduce the likelihood of this intensity by reducing the cause.

To Conclude

There are four really good reasons why coal fired power plants may not be the best option for a resilient and reliable grid. This was just a high-level overview. Each of these topics could be their own posts. For the long-term resilience of our electric power system, it is key that we not look to short-term fixes to the detriment of long-term health, economic and environmental well-being.

 

 

Advertisements

Does Extreme Weather Drive Investment in Resilient Infrastructure? Sometimes…

This is an excerpt of a white paper published at HARC on 5/21/2018…

Extreme Weather Events

Since 1980 the United States has experienced 219 separate billion-dollar-plus natural disaster weather events. The total cost of these 219 events is estimated to be $1.8 trillion dollars. This takes into account 2017, which is on record as being the most costly year for natural disasters, with a cumulative cost of over $300 billion dollars. The number and intensity of these weather events are causing growing concern across the globe as well.

The risks faced by the public and private sector related to climate include direct physical impacts on

electric power climate resilience
Pink Sherbet Photography from Utah, USA

investments, degradation of critical infrastructure, reduced availability of key inputs and resources, supply chain disruptions and changes in workforce availability and productivity.  The Global Risks Report 2016, finds that two of the top three concerns for business over the next 10 years are failure of climate change mitigation and a failure to adapt to potential extreme weather events. The concern indicated as most crucial is a water crises. All of these issues point to increasing likelihood of investment in more resilient infrastructure in order to limit these risks. It is anticipated that these extreme weather events are likely to increase over time, particularly with the intensity of floods, droughts, and/or heat waves. A similar increase in intensity is also predicted with tornadoes, hailstorms and thunderstorm winds, but there is still some uncertainty as to what extent and where.   These extreme storm events are intensifying disaster risk and will continue to have a significant impact on communities and infrastructure.  Recovery often requires enormous resources, which underscores the growing need for new adaptive infrastructure to make critical facilities and communities are more resilient.

For this study, we explore whether the growing number and intensity of storm events have led to greater investment in more resilient power systems. A resilient power system is one that is built to lessen the likelihood of a power outage.  These systems must manage and respond to power outage events to mitigate impacts, quickly recover when the power comes back on, and learn from the outage event to reduce the likelihood of future outages.

Our study period is from 2000 to 2016. During this timeframe, the United States experienced more than99,000 power outages, some small and some rather large. This includes ice storms that knock out power for a few thousand customers to Superstorm Sandy, which at the height of the blackout left approximately 5.7 million customers without power across New York, New Jersey, and Connecticut.  Further, severe weather events, including hurricanes, extreme heat, and droughts between 2004 and 2013, resulted in over 25 significant power generation disruptions that led to curtailment of power generation and power outages across the US.

We test whether power outages as a result of natural disasters influence decisions by organizations and critical facilities to adopt methods to reduce the likelihood of potentially detrimental power disruptions. One way to test this assumption is by looking at the deployment of combined heat and power (CHP) applications across the United States. CHP is by no means the only approach to mitigate power outage risk at a site, but is one of the more likely options to be pursued.

Combined Heat and Power & Power Resilience

Combined heat and power (CHP) is being touted as a technology that can help with power reliability and resilience concerns. CHP produces power on-site, typically using natural gas which is highly reliable. This was demonstrated during Hurricane Sandy, where CHP systems performed very well in comparison to the grid and diesel back-up generators. We have seen anecdotal evidence that CHP is coming online to improve site resilience, and a handful of states have been pushing for rules to promote resilient CHP. In this study, we wanted to see if CHP is more generally being installed to improve site resilience.

Currently, there are 81 GW of CHP installed across the United States, and significant potential for much more. A 2016 DOE study demonstrated that there is 340 GW more of technical potential for CHP. There has been considerable effort at the federal level to push for more CHP in the near-term. Examples include the Energy Policy Act of 2005, Federal Interconnection Standards, 2008 Federal Investment Tax Credit for CHP, 2008 Accelerated Depreciation for CHP boiler Maximum Achievable Control Technology (MACT) in 2011, and President Obama’s Executive Order in 2012 that set a goal of 40 GW of new CHP by 2020.

There has also been considerable regulatory and financial assistance activity at the state, utility, and local level. This includes interconnection standards, as well as incentives, grants, rebates, and loans. Some of the more notable activity includes New Jersey’s Energy Resilience Bank which provides grants and loans to cover 100% of costs of resilient systems, The New York State Energy Research and Development Authority (NYSERDA) CHP Incentive Program, and California’s Self-Generation Incentive Program (SGIP) which funds systems of up to 3 MW. Some other state activities to promote CHP for resilience include legislation in Texas and Louisiana that requires all newly constructed state facilities or state facilities undergoing major renovation to assess opportunities for CHP.  Similarly, Connecticut’s Microgrid Pilot Program has a central focus on the role of CHP.  Missouri, Illinois, and Michigan also have various CHP-focused energy resilience planning efforts.

Finish Reading at HARC Research…

Rebuild and Forget? New Climate Models Say Not So Fast

In March of this year, I wrote a blog post on the adaptation gap.  Here I discuss that due to some

Climate – Galveston, Texas, September 17, 2008 – Piles of debris are lined up along the seawall on Galveston Island where Hurricane Ike made landfall.

uncertainty as to actual intensity and frequency of future climate-induced extreme weather events, it is very difficult for cities to plan and invest in resilient infrastructure. The outcome of this uncertainty is that cities are not taking the appropriate action to mitigate risk. Business-as-usual continues, the same infrastructure is designed and built and communities remain vulnerable.

To remedy this climate adaptation gap requires better information on the likelihood and intensity of extreme weather events. If this information is unknown, we cannot quantify the risk. When you are not able to quantify the risk, you cannot properly run cost/benefit analysis that would result in more resilient infrastructure. The metric is not there.

New Climate Analysis Points to More Storms

Fortunately, a major step forward was taken this week. Kerry Emanuel from the MIT Lorenz Center published a paper that is likely to shake up the climate adaptation planning industry. The paper “Assessing the present and future probability of Hurricane Harvey’s rainfall” provides greater clarity regarding the likelihood of future major hurricane rainfall events in Texas. The model provides a more concise look at future hurricane risks by assigning probabilities to the likelihood of these events out to the year 2100. They accomplish this by combining global climate models with their own hurricane simulation model. By doing so they are able to develop higher resolution models that can give “precise simulations of hurricanes.” (Read the paper if you want to get more specific.)

From this paper, we see that the likelihood of 20 inches plus rainfall from hurricanes has increased six-fold since 2000.  The likelihood of greater number and intensity will continue to increase out to the year 2100 if we do not work to significantly reduce greenhouse gas emissions.  To state it in another way, the study finds that during the years 1981 to 2000, there was about a 1 in 100 chance of a hurricane producing a large rain event exceeding 20 inches. By the year 2081, the study’s models suggest that the likelihood will increase to a 1 in 5.5 chance.

The benefit to planners and government decision makers is they now have a little better clarity as to what to anticipate in the next few decades. This clarity, i.e. probability distributions and likelihood estimates of future hurricane events, increases their ability to quantify the risk of future hurricane events. What it does not do is help to understand the risks of other natural disasters, such as non-hurricane related floods, droughts and extreme heat in the Texas Gulf Coast region. The problem with this is that we cannot weigh the likelihood and impact of separate extreme climate and weather-related events. How does a community prioritize action if it does not know what is the greatest risk?

Investing in Houston 

Let’s set that concern aside for now because with this study we at least have a better idea as to hurricane risk. So how does this become a part of the decision maker and planners’ conversation and analysis? Is Mayor Turner, Judge Emmett, Harris County Flood Control and/or the Army Corp of Engineers going to use this information to guide future stormwater management infrastructure planning? At this time, they are actively working toward identifying appropriate stormwater mitigation investments. In the policy-making world, we would call this a  punctuated equilibrium agenda-setting event. Now that this is on the public’s agenda, how far will they go and will this momentum continue? Time will tell. With the lack of funding coming from the federal government at this time and the considerable pushback on the $61 billion Texas Harvey Recovery Plan, building more resilient appears not to be a federal priority.

If the federal funding does not materialize, believe it or not, it will be very likely that much of this momentum goes away. People will rebuild, some infrastructure will be patched up and things will continue as usual. If history is any indicator, our short-term memories will allow us to forget and continue on.

It is up to the business and NGO community to keep this a part of our conversation and on the agenda. To keep it on the agenda will require resources, as well as ongoing demand from the private sector, particularly the oil and gas companies. It is in their best interest to do so. Their business and employees can only undergo so many disruptions before employees and their families look for higher ground.

If the private sector decides it is not worth the effort to change the way we do things, we will go back to business as usual. We will rebuild and try to forget this ever happened. However, with what Emanuel’s models are showing, we may not have the luxury of rebuilding and forgetting.

 

 

 

Critical Action Needed to Make Electric Power Grid more Resilient to Climate Change

With three major hurricanes wreaking havoc on the United States’ power sector in 2017

2560px-Katia,_Irma,_Jose_2017-09-08_1745Z–1935Z
Katia, Irma and Jose…After Harvey and before Irma…                 Hurricane Season 2017

there has been a growing discussion on how to make the grid more resilient. Due to climate change, it is anticipated that storms are likely to become more intense and possibly more frequent, placing growing pressure on the ability of the power system to keep the lights on. We are already finding that climate-induced extreme weather events are already resulting in more frequent and longer duration outage events in the United States.

Defining Resilience 

With this growing threat, a resilient power system sounds like a good thing. Unfortunately, it appears that there is some difficulty in defining what we mean by a resilient power system. From many of my recent conversations, I find there is confusion by what we mean by resilience. For example, I see in some cases, reliability and resilience are used interchangeably. To be clear, reliability is not resilience. According to a recent National Academies of Science Report “Enhancing the Resilience of the Nation’s Electricity Grid,” reliability deals with ensuring there is an adequate amount of power supplied to meet demand, even in times of expected and “reasonably” unexpected outages. Resilience differs in that the expectation is that a resilient system can adapt and lessen the likelihood that an outage will occur and if one does occur to manage the event, lessen impacts, recover as quickly as possible and learn how to deal with future outages.

Valuing Resilience 

IceStormPowerLinesBeyond defining resilience another issue we face is that much of the decision making and cost/benefit calculations are based on economic efficiency calculations that value the benefits of a reliable grid, not a resilient grid.  The focus is on short-term cost-benefit optimization that is detrimental to resilience improvements. In other words, the calculation looks at what keeps the lights on now in our current environment, not what investment would limit the large-area, long-duration outages that may occur due to severe weather activity or other cyber or physical attacks. To overcome this issue requires that there is a better understanding of how to value resilience. To do this requires that we have a better idea as to the probability and intensity of future events that may impact the grid. These known unknowns and unknown unknowns are not easy to value which is problematic when putting together a rate case to fund this investment. Fortunately, steps are being taken to quantify metrics tied to what would be considered a resilient power system. With the development of better metrics to measure performance, it will be more likely we can make more resilient appropriate investments.

Resilient Components – Weighing the Costs

As we get better at improving our ability to define, measure and value a more resilient power system, what would be some strategies that we could pursue? There are a variety of ways to make the transmission and distribution system more robust. All of them may add significant upfront costs to the system but are likely to also provide long-term benefits as the power system is more able to withstand more severe weather events. Following is a very high-level overview of some options that could be considered.

Put the wires underground, sometimes…Undergrounding power lines is an option that I hear a lot. The problem with “undergrounding” is that it is significantly more expensive than hanging the wires on poles. So, we must weigh the cost and benefit of such an approach. In an area that is susceptible to high winds, ice storms and tornadoes, placing the wires underground may be worth the cost. The question we must ask is whether we anticipate there will be an increasing number of these events that would justify burying these cables? At this time, we know that things are going to get a bit hairier, but we are uncertain as to how hairy and when. That makes it difficult to pull the trigger.

Also, we must remember that an approach that would make a power system more resilient in one location may not be as successful in other. For example, if an area is susceptible to flooding, burying wires may be a bit more problematic. Although protections can be put in place to protect against flooding of underground lines, that adds additional cost and it may still not prevent a disruption. Further, any disruption, due to damage to an underground cable, will likely take longer to fix and be more costly than repairing above-ground wires. We must ask are we preparing for floods, high winds or both?

Elevate substations…Not only are the wires susceptible to water, substations can be, as Underwater_substation,_Cedar_Rapids,_June_12_2008well. This was demonstrated by Hurricane Harvey flooding which ruined multiple substations. This damage can be limited by elevating the platform for where these components sit. Levees and dikes can also be built to protect these systems. This is easier done for new infrastructure development, however moving or elevating legacy systems can be cost prohibitive if the proper valuation of this benefit is not properly accounted for.

Strengthen wires and poles...Additionally, for the transmission system, there are methods that can make it more robust, particularly to ice storms and strong wind events. This would include reinforcing poles and towers or constructing wind-resistant concrete and/or steel poles. There could also be more frequent deadends placed along the system. At present, the practice is to place a dead end every ten miles. Placing these deadends more closely together will reduce the likelihood of a domino effect if one of the standard designed poles are compromised.

A smarter gridFor distribution systems, improving resilience requires moving from a radial design to a more networked design. A networked design has more than one supply feed that limits outages if one of the lines go down. The network designs should be coupled with more advanced communication infrastructure that allows systems damage to be isolated and to reroute power when a component is damaged. These smarter grid systems have been deployed in a patchwork across the United States. CenterPoint, in the Houston-Galveston region, does have some smart grid components deployed which allowed for more rapid recovery during Hurricane Harvey.

Final Thoughts

The bottom line is that solutions exist. I presented a short list of options that may be considered. I didn’t even touch on the fast-approaching opportunities that come with decreasing cost of battery storage. The problem with pursuing many of these strategies is the added expense. Our decision-making frameworks for utility investment are not set-up for resilience investment, they are set up to ensure a reliable grid. Fortunately, with better climate modeling and resilience metrics, we are getting closer to properly valuing the short and long-term benefits of the resilient investment and are moving in the right direction. In the meantime, we will just keep trimming the trees.

 

 

 

Reducing Vulnerability of Electric Power Grid to Extreme Weather Events

This post originally appeared on the HARC Blog

The primary story line for Hurricane Harvey is the amount of rain that it dropped on

Hurricane-Tropical_Storm_Harvey_in_Houston_-_August_26_2017_(36007370604) (1)
Picture Taken by R. Crap Mariner from Houston, USA

southeast Texas. Some estimates have the total amount at about 27 trillion gallons of water, approximately 86,000 Astrodomes. Much of the region saw significant flooding and recovery will take some time. Fortunately, Hurricane Harvey did not cause significant, long-term power outages. There were a large number, estimates range up to 800,000 customers, but my no means the power outages that were seen during Hurricane Ike, where 2.1 million customers in CenterPoint’s territory alone lost power1. Many of these customers were without power for several weeks. Hurricane Irma looks to put millions of utility of customers in the dark, as well.

Hurricanes and tropical storms are just one of the increasing number of natural disaster events that are threatening our electric power system. Ice storms, tornadoes and wildfires in 2017 have also resulted in significant power outages for the state. To see the national extent of this disaster potential check out the DOE report titled “US Energy Sector Vulnerabilities to Climate Change and Extreme Weather.”2

Fortunately, the threat to our electric power system continues to be on many people’s agendas. The National Academies Press has just published a report titled “Enhancing the Resilience of the Nation’s Electric System3.” This report considers a multi-pronged threat to our system including cyber, physical and natural disaster threats. I will be in Washington DC this week discussing the natural disaster risk findings of this report with the House Committee on Science, Space and Technology.

Solutions
For all of the risks, there are a variety of technology and data solutions that are actively being deployed that can minimize them.

Deploy Resilient Technologies
First, in light of our current situation, microgrids should be further deployed to reduce risk of hurricanes, tropical storms and flooding. Microgrids are mini-power systems for a building, campus, neighborhood, that typically have a variety of generation resources working together including a combined heat and power system, solar panels, and/or batteries. Microgrids and particularly microgrids with CHP are being considered more often to increase the resilience of critical infrastructure, including hospitals, wastewater and water treatment plants, police and fire stations, data centers, emergency centers, etc. It is estimated that approximately 3.7 GW of microgrid systems will be deployed by 2020.4 Small in comparison to other resources, but a very important resource as we look for systems that are resilient and have demonstrated their efficacy through a wide number of natural disaster events. To be resilient, these systems must be placed above predicted flood levels, have black start capability; must be able to operate independent from the grid, have appropriate switch gear controls and ample carrying capacity. An emerging funding mechanism to pay for these these systems may be resilience bonds. These bonds are to be issued to mitigate risk to critical infrastructure. This bond type has yet to be issued but has received a recent push by the insurance industry because of a desire reduce risk exposure to natural disasters. Technical resources also exist to help deploy CHP and microgrids. This includes DOE’s CHP Deployment program. Under this program, HARC has partnered with the DOE to operate the Southwest CHP Technical Assistance Partnership.

The second risk that is not so apparent now, but was a real problem a few years ago, is extreme drought and heat. Approximately 85% of power generation in the United States requires water for cooling. Due to drought risk, there should be greater emphasis on deploying systems that do not require water to operate5 . Water supply is a problem for states such as Texas that have been known to experience long-term droughts. The 2011 and 2012 Texas droughts resulted in the curtailment of power generation across the state. Besides drought, many western states see significant water risk due to growing demand for water by communities, agriculture and industry. Two generation systems that require no water to operate are PV solar6 and wind7 systems. These systems have been deployed at a growing rate, but will need financial resources and regulatory certainty to scale more quickly. A potential financial solution could be the master limited partnerships. This would put renewables on a more even playing field with fossil fuel assets that already use this funding mechanism. Green bonds are another possible solution that should receive further consideration.

Build to a Certain Standard
No matter what weather event is being prepared for, it is highly recommended that utilities and power system developers begin to design their power generation systems and transmission and distribution infrastructure to meet resilience standards like PEER (Performance Excellence in Electricity Renewal). PEER is a rating process designed to measure and improve sustainable power system performance. PEER is a voluntary program that utilities and power providers can work toward. A PEER rated power system meets strict criteria for reliability and resilience, operational effectiveness and environmental standards.

Improve Decision Making
It is difficult to determine the timing, the location and intensity of extreme weather events. With this level of uncertainty and when financial resources are limited, it is challenging to make the appropriate investment decisions. When decisions are not made, infrastructure is not built and our systems are not prepared. The result is significant damage and loss. However, recently there has been some progress in better understanding future climate patterns. Progress is being made with climate models that are greatly improving our understanding of the likelihood and intensity of future storms. Down-scaled regional climate models, developed by organizations like Texas Tech University’s Climate Science Center, are helping planners and decision makers to make more informed decisions. As our understanding improves better decisions can be made that will result in more resilient power infrastructure.

Conclusion
Solutions exists and new solutions are coming online to reduce the risk to our electric power systems. I discuss only a couple of options and their role in mitigating the risk of certain natural disaster events. For a resilient power systems, there is not just one or two solutions, there are a number of solutions and combination of solutions that must be deployed. For example, utility scale wind is great for drought scenarios, but may be vulnerable to high wind events, tornadoes and ice storms.
To scale these solutions quickly will require political will and considerable funding. The funding is there, but due to the political environment, it is largely sitting on the sideline. The political will has been a bit slow catching up. Regulations and policies must catch up with the reality that power systems are facing. The way is clear, the political will is less certain.

1http://www.chron.com/business/energy/article/Outages-dwindling-across-Te…
2https://energy.gov/sites/prod/files/2013/07/f2/20130710-Energy-Sector-Vu…
3https://www.nap.edu/catalog/24836/enhancing-the-resilience-of-the-nation…
4https://www.greentechmedia.com/articles/read/u-s-microgrid-growth-beats-…
5https://750astrodomes.com/2017/07/14/electric-power-sector-you-have-a-wa…
6http://www.seia.org/research-resources/us-solar-market-insight
7https://energy.gov/eere/wind/maps/wind-vision
8http://peer.gbci.org/faqHurricane-harvey-nasa

 

 

Reducing Climate Vulnerability of Electric Power Grid to Extreme Weather Events

This post originally appeared on the HARC Blog

The primary story line for Hurricane Harvey is the amount of rain that it dropped on

Hurricane-Tropical_Storm_Harvey_in_Houston_-_August_26_2017_(36007370604) (1)
Picture Taken by R. Crap Mariner from Houston, USA

southeast Texas. Some estimates have the total amount at about 27 trillion gallons of water, approximately 86,000 Astrodomes. Much of the region saw significant flooding and recovery will take some time. Fortunately, Hurricane Harvey did not cause significant, long-term power outages. There were a large number, estimates range up to 800,000 customers, but my no means the power outages that were seen during Hurricane Ike, where 2.1 million customers in CenterPoint’s territory alone lost power1. Many of these customers were without power for several weeks. Hurricane Irma looks to put millions of utility of customers in the dark, as well.

Hurricanes and tropical storms are just one of the increasing number of natural disaster events that are threatening our electric power system. Ice storms, tornadoes and wildfires in 2017 have also resulted in significant power outages for the state. To see the national extent of this disaster potential check out the DOE report titled “US Energy Sector Vulnerabilities to Climate Change and Extreme Weather.”2

[amazon_link asins=’0316353000′ template=’ProductCarousel’ store=’750astrodomes-20′ marketplace=’US’ link_id=’82741c0c-a32e-11e7-8302-515bbf5f1787′]

Fortunately, the threat to our electric power system continues to be on many people’s agendas. The National Academies Press has just published a report titled “Enhancing the Resilience of the Nation’s Electric System3.” This report considers a multi-pronged threat to our system including cyber, physical and natural disaster threats. I will be in Washington DC this week discussing the natural disaster risk findings of this report with the House Committee on Science, Space and Technology.

Solutions
For all of the risks, there are a variety of technology and data solutions that are actively being deployed that can minimize them.

Deploy Resilient Technologies
First, in light of our current situation, microgrids should be further deployed to reduce risk of hurricanes, tropical storms and flooding. Microgrids are mini-power systems for a building, campus, neighborhood, that typically have a variety of generation resources working together including a combined heat and power system, solar panels, and/or batteries. Microgrids and particularly microgrids with CHP are being considered more often to increase the resilience of critical infrastructure, including hospitals, wastewater and water treatment plants, police and fire stations, data centers, emergency centers, etc. It is estimated that approximately 3.7 GW of microgrid systems will be deployed by 2020.4 Small in comparison to other resources, but a very important resource as we look for systems that are resilient and have demonstrated their efficacy through a wide number of natural disaster events. To be resilient, these systems must be placed above predicted flood levels, have black start capability; must be able to operate independent from the grid, have appropriate switch gear controls and ample carrying capacity. An emerging funding mechanism to pay for these these systems may be resilience bonds. These bonds are to be issued to mitigate risk to critical infrastructure. This bond type has yet to be issued but has received a recent push by the insurance industry because of a desire reduce risk exposure to natural disasters. Technical resources also exist to help deploy CHP and microgrids. This includes DOE’s CHP Deployment program. Under this program, HARC has partnered with the DOE to operate the Southwest CHP Technical Assistance Partnership.

The second risk that is not so apparent now, but was a real problem a few years ago, is extreme drought and heat. Approximately 85% of power generation in the United States requires water for cooling. Due to drought risk, there should be greater emphasis on deploying systems that do not require water to operate5 . Water supply is a problem for states such as Texas that have been known to experience long-term droughts. The 2011 and 2012 Texas droughts resulted in the curtailment of power generation across the state. Besides drought, many western states see significant water risk due to growing demand for water by communities, agriculture and industry. Two generation systems that require no water to operate are PV solar6 and wind7 systems. These systems have been deployed at a growing rate, but will need financial resources and regulatory certainty to scale more quickly. A potential financial solution could be the master limited partnerships. This would put renewables on a more even playing field with fossil fuel assets that already use this funding mechanism. Green bonds are another possible solution that should receive further consideration.

Build to a Certain Standard
No matter what weather event is being prepared for, it is highly recommended that utilities and power system developers begin to design their power generation systems and transmission and distribution infrastructure to meet resilience standards like PEER (Performance Excellence in Electricity Renewal). PEER is a rating process designed to measure and improve sustainable power system performance. PEER is a voluntary program that utilities and power providers can work toward. A PEER rated power system meets strict criteria for reliability and resilience, operational effectiveness and environmental standards.

Improve Decision Making
It is difficult to determine the timing, the location and intensity of extreme weather events. With this level of uncertainty and when financial resources are limited, it is challenging to make the appropriate investment decisions. When decisions are not made, infrastructure is not built and our systems are not prepared. The result is significant damage and loss. However, recently there has been some progress in better understanding future climate patterns. Progress is being made with climate models that are greatly improving our understanding of the likelihood and intensity of future storms. Down-scaled regional climate models, developed by organizations like Texas Tech University’s Climate Science Center, are helping planners and decision makers to make more informed decisions. As our understanding improves better decisions can be made that will result in more resilient power infrastructure.

Conclusion
Solutions exists and new solutions are coming online to reduce the risk to our electric power systems. I discuss only a couple of options and their role in mitigating the risk of certain natural disaster events. For a resilient power systems, there is not just one or two solutions, there are a number of solutions and combination of solutions that must be deployed. For example, utility scale wind is great for drought scenarios, but may be vulnerable to high wind events, tornadoes and ice storms.
To scale these solutions quickly will require political will and considerable funding. The funding is there, but due to the political environment, it is largely sitting on the sideline. The political will has been a bit slow catching up. Regulations and policies must catch up with the reality that power systems are facing. The way is clear, the political will is less certain.

1http://www.chron.com/business/energy/article/Outages-dwindling-across-Te…
2https://energy.gov/sites/prod/files/2013/07/f2/20130710-Energy-Sector-Vu…
3https://www.nap.edu/catalog/24836/enhancing-the-resilience-of-the-nation…
4https://www.greentechmedia.com/articles/read/u-s-microgrid-growth-beats-…
5https://750astrodomes.com/2017/07/14/electric-power-sector-you-have-a-wa…
6http://www.seia.org/research-resources/us-solar-market-insight
7https://energy.gov/eere/wind/maps/wind-vision
8http://peer.gbci.org/faqHurricane-harvey-nasa

 

 

CHP Keeps Hospital Running During Hurricane Harvey – DOE EERE Post

By Taylor Jackson – DOE – Originally Posted in US Department of Energy’s EERE AMO Blog

Our thoughts and concerns are with all the people affected by natural disasters like the recent hurricanes and storms. With any major storm, energy reliability and security are major concerns for those in the storm’s path. Medical facilities in particular face significant risks if the power goes out – the ability to use energy for heating and cooling is crucial to patient care, protection of long-term medical research projects, and maintaining living and working conditions within hospitals.

While much of Houston, Texas, and the surrounding areas, were faced with uncertainty

TECO Harvey
Courtesy of TECO

as Hurricane Harvey made landfall, the Texas Medical Center – the largest medical center in the world – was able to sustain its air conditioning, refrigeration, heating, sterilization, laundry, and hot water needs throughout the storm thanks to the combined heat and power (CHP) installation operated by Thermal Energy Corp (TECO). CHP is a way to generate on-site electric power and useful thermal energy (heat) from a single fuel source. TECO’s CHP system at the Texas Medical Center uses natural gas to deliver 48 MW of power to provide reliability and security to the 19 million square foot medical campus even in the event of prolonged grid outages.

Even with rising water levels in the Brays Bayou and other areas around the CHP system, the energy infrastructure operated without interruption through the storm. Although the CHP system was designed primarily to increase energy efficiency and reduce energy costs for the medical center, the events of Hurricane Harvey showed that CHP was also a crucial part of the emergency preparedness plan and helped staff at the Texas Medical Center focus on patient care without fear of losing power. The Texas Medical Center includes medical research and care facilities like the University of Texas MD Anderson Cancer Center, Texas Children’s Hospital, and the 16 other institutions.

Finish Blog Here…